博客
关于我
矩阵可逆的一种刻画方式
阅读量:535 次
发布时间:2019-03-08

本文共 551 字,大约阅读时间需要 1 分钟。

问题

若矩阵A满足 A + A T = I A+A^{\rm{T}}=I A+AT=I,则A可逆。

证明一

反证法。假设A不可逆,则

∃ x 0 ≠ 0 \exists{x_0}\ne0 x0=0,使得 A x 0 = 0 A{x_0}=0 Ax0=0,则
x 0 A T = ( A x 0 ) T = 0 T {x_0}{A^{\rm{T}}} = {(A{x_0})^{\rm{T}}} = {0^{\rm{T}}} x0AT=(Ax0)T=0T

∴ 0 ≠ x 0 T x 0 = x 0 T ( A + A T ) x 0 = x 0 T A x 0 + x 0 T A T x 0 = x 0 T 0 + 0 T x 0 = 0 \therefore 0 \ne x_0^{\rm{T}}{x_0} = x_0^{\rm{T}}(A + {A^{\rm{T}}}){x_0} = x_0^{\rm{T}}A{x_0} + x_0^{\rm{T}}{A^{\rm{T}}}{x_0} = x_0^{\rm{T}}0 + {0^{\rm{T}}}{x_0} = 0 0=x0Tx0=x0T(A+AT)x0=x0TAx0+x0TATx0=x0T0+0Tx0=0

矛盾,所以A可逆。

证明二

转载地址:http://fulnz.baihongyu.com/

你可能感兴趣的文章
netty之 定长数据流处理数据粘包问题
查看>>
Netty事件注册机制深入解析
查看>>
netty代理
查看>>
Netty入门使用
查看>>
netty入门,入门代码执行流程,netty主要组件的理解
查看>>
Netty原理分析及实战(一)-同步阻塞模型(BIO)
查看>>
Netty原理分析及实战(三)-高可用服务端搭建
查看>>
Netty原理分析及实战(二)-同步非阻塞模型(NIO)
查看>>
Netty原理分析及实战(四)-客户端与服务端双向通信
查看>>
Netty发送JSON格式字符串数据
查看>>
Netty和Tomcat的区别已经性能对比
查看>>
Netty在IDEA中搭建HelloWorld服务端并对Netty执行流程与重要组件进行介绍
查看>>
Netty基础—1.网络编程基础一
查看>>
Netty基础—1.网络编程基础二
查看>>
Netty基础—2.网络编程基础三
查看>>
Netty基础—2.网络编程基础四
查看>>
Netty基础—3.基础网络协议一
查看>>
Netty基础—3.基础网络协议二
查看>>
Netty基础—4.NIO的使用简介一
查看>>
Netty基础—4.NIO的使用简介二
查看>>